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Experimental control of chaos in a laser
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The chaotic behavior of a single-mode laser has been stabilized over different periodic orbits by a
small modulation of a control parameter, at a frequency near one of the frequencies still evident above
the broad continuum in the chaotic power spectrum. Criteria for selecting the perturbation frequency
and evaluating the robustness of the stabilization are given. The main experimental features are repro-

duced by numerical simulations.

PACS number(s): 05.45.+b, 42.50.Lc, 42.55.Lt

The problem of controlling chaos has received much
recent interest. Stabilizing a chaotic dynamics to period-
ic orbits or steady states by small perturbations opens
novel scenarios in the theory and application of nonlinear
dynamics. The advantage of dealing with chaotic attrac-
tors is that they contain an infinite number of different
unstable orbitals [1] and hence provide a large choice.

Different methods have been used for controlling chaos
to periodic orbits, based (i) on the determination of the
stable and unstable directions in the Poincaré section
[2-4], (ii) on a self-controlling feedback procedure [5],
(iii) on the introduction of small modulation of a control
parameter [6-11], and (iv) on the knowledge of a
prescribed goal dynamics [12]. Methods (i) and (ii) are
usually called feedback methods while (iii) and (iv) are
called non-feedback methods [13].

Regarding case (iii), theoretical work has dealt with the
suppression of chaos in the dynamics of different models
[6-8]. Although control of chaos by small modulations
has not been proved in general, some specific models [7]
show the reduction of the leading Lyapunov exponent,
thus resulting in the stabilization of weakly unstable
periodic solutions. From an experimental point of view,
it has been shown that small modulations allow control of
chaos in different dynamical systems such as a
microwave-pumped spin wave instability [9], a bistable
magnetoelastic system [6], electronic circuits [10], and a
laser with modulated losses [11]. In particular, Ref. [11]
shows that the chaotic attractor of a single-mode CO,
laser with modulated losses can be stabilized over several
different periodic orbits by adjusting the phase of a per-
turbation at a frequency in the ratio 1:2 or 1:4 with the
forcing frequency.

In this paper we show that the chaotic behavior of a
laser can be stabilized by a small modulation of a control
parameter at a frequency suggested by the power spec-
trum of the free-running system. Resonant stimulation
was already proposed by Hiibler and Liischer to control
nonlinear oscillators [12]. In that case, the perturbation
vector was calculated as the difference between the goal
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dynamics and the actual free-running dynamics. This
method has the advantage of taking into account all the
information contained in the unperturbed system. How-
ever, it cannot be easily implemented, since in general
some variables are not directly accessible, and recursion
to delay coordinates embedding [14] would make it
difficult to apply it in real time. Furthermore, this goal
dynamics is not generally implementable by tiny pertur-
bations, but may require corrections of the same order as
the main signal.

In our case, robust stabilization of different periodic
orbits can be achieved by a parametric perturbation with
frequency close to that of the leading cycle embedded in
the chaotic attractor and with relative amplitudes of the
order of a few percent. Since the perturbation parame-
ters are suggested by a preliminary global measurement
on the system itself, this method is intermediate between
methods (i), (ii), and (iii). On the one hand, it avoids the
on-line tracking of a local feedback stabilization, which
may put too stringent requirements on the time resolu-
tion of the tracking apparatus. On the other hand, it
adapts to a global system property and hence is not im-
posed as an external artifact. Our experiment consists of
a CO, laser where chaotic instabilities are induced by a
feedback signal with a damping rate comparable to the
population decay rate [15,16]. Numerical simulations on
a four-level model [17,18] of the CO, laser confirm the
experimental results.

The experimental apparatus (Fig. 1) consists of a
single-mode CO, laser with an intracavity loss modulator
(electro-optic crystal driven by a voltage V). The optical
cavity is 1.35 m long and the total transmission
coefficient T is 0.09 for a single pass. The intensity decay
rate k( V) can be expressed as [15]

|

where ¥V, =4240 V and V;=100 V accounts for a small
misalignment between the optical axes of the crystal and
the intracavity polarizer. The modulation voltage V is
applied through a feedback loop consisting of a detector
yielding a current proportional to the laser output inten-
sity plus an amplifier. The feedback voltage V is summed

9

m(V—V,)
2L

V)=
(V) A

2T +(1—2T)sin?

94 ©1995 The American Physical Society



52 EXPERIMENTAL CONTROL OF CHAOS IN A LASER 95

PS

WA

|

Bias
(+ Controb

FIG. 1. Experimental setup: G, grating; LT laser tube;
EOM, clectro-optic modulator; M, mirror; D, detector; S,
scope; and A, amplifier. The feedback loop provides the chaotic
regime, as described in Ref. [15]; the control is introduced as an
external signal to amplifier A.

to a bias B introduced through the second input of the
amplifier.

For fixed pump value and amplifier gain, the bias volt-
age B acts as the control parameter. The system shows a
large variety of dynamical behaviors, including chaotic
instabilities due to a competition among unstable points
leading to heteroclinic obits [16]. Here, we refer to a
range of B values where first a stable point undergoes a
Hopf bifurcation and then the limit cycle is destabilized
toward chaos through a sequence of subharmonic bifur-
cations. The experimental sequence is shown in Fig. 2,
where the attractors are obtained by plotting the laser in-
tensity 7 versus the voltage V.

When the system is in the chaotic region, the stabiliza-
tion of periodic orbits has been obtained by adding to the
bias voltage a small sinusoidal perturbation, so that it be-
comes

B=B[1+esin(2rf1)] .

The experimental results shown in Fig. 3 are obtained
with B =443 V and £=0.018; in case (a) we set f=36.0
kHz, while in case (b) we set f =37.0 kHz. Figure 4
gives the power spectra of the unperturbed laser of Fig.
2(d) and of the perturbed systems of Figs. 3(a) and 3(b).
It is important to observe that the unperturbed spectrum
[Fig. 4(a)] still contains a peak at frequency f*=38.4
kHz, which is the remnant of the limit cycle. Therefore,
the chaotic attractor of Fig. 2(d) can be stabilized by
choosing a frequency f close to f*, while the relative per-
turbation amplitude ¢ is of the order of 2%. Moreover, it
appears from Figs. 4(b) and 4(c) that the fundamental fre-
quencies of the stabilized attractors are locked to the per-
turbation frequencies [note that these frequencies are
quite different from those of the attractors of Figs. 2(e)
and 2(f), reported in the caption]. Once the desired orbit
is selected, it lasts for a time on the order of several
minutes, until uncontrolled drifts spoil the resonance
condition between the cavity mode and the gain line.

For the sake of completeness, we have tested the effect
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FIG. 2. Experimental phase space plots (laser intensity I vs
feedback voltage ¥) for increasing values of the bias voltage B
(we denote with f* the fundamental frequency): (a) limit cycle
at f*=41.4 kHz, B =416 V; (b) subharmonic bifurcation fr72
at f*=40.2 kHz, B =429 V; (c) subharmonic f/4 at f*=39.6
kHz, B=436 V; (d) chaotic attractor, B=443 V; (e) period-4
limit cycle at f*=35.0 kHz, B =451 V; (f period-2 limit cycle
at f*=33.5kHz, B=472 V.

of perturbations near the first two bifurcation points
(B =416 and 429 V). Using a perturbation amplitude
such as that applied in the chaotic regime and perturba-
tion frequencies close to the corresponding f* values, no
relevant changes have been detected in the attractors.
The stabilization has been also tested with respect to
changes of the amplitude €. Figure 5(a) shows the region
in the parameter space (g, f) for which it is possible to
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FIG. 3. Stabilized orbits (I vs V) in the chaotic parameter

range [Fig. 2(d), B =443 V] with £¢=0.018: (a) perturbation fre-
quency f =36.0 kHz; (b) perturbation frequency f =37.0 kHz.
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FIG. 4. Power spectra corresponding to (a) the unperturbed
chaotic attractor of Fig. 2(d); (b) and (c) the stabilized orbits of
periods 2 and 4 of Fig. 3, respectively.
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FIG. 5. (a) Experimental stability domain (area between the
two solid lines) in the parameter space; the dashed line separates
the regions of period-4 and period-2 stable orbits (right side and
left side, respectively). (b) Dependence of the robustness indica-
tor A—A_ on the perturbation frequency f, for e=0.027: sym-
bols denote experimental points (the error bars are included
within the symbol size) while the solid line represents a cubic fit.

observe regular behaviors, such as those reported in Fig.
3 (here indicated by full triangles). In order to character-
ize the robustness of the stabilization, we consider the
difference A=S(f)—S between the peak value of the
power spectrum S(f) at the fundamental frequency of
the stabilized orbit and the averaged spectrum S over the
range 0-100 kHz. A is a suitable indicator of order,
since it is maximum for a regular noiseless signal, while it
goes to zero for a broadband featureless spectrum. For
the chaotic spectrum of Fig. 4(a) A, =34.0 dB, while for
the stabilized cases of Figs. 4(b) and 4(c), A=56.3 and
47.8 dB, respectively. Figure 5(b) shows the dependence
of A—A, on the perturbation frequency measured at
€=0.027. Thus, the boundaries of Fig. 5(a) correspond
to the merging of the peak with the chaotic background,
so that A reduces to A.. In view of this role, A—A_ can
be considered as a convenient ‘“robustness indicator.”
The fact that the period-1 stable orbit does not appear is
not due to experimental difficulties, but to the position of
the stability region. Increasing € over 8%, the stable
period-1 cycle can also be obtained, but the shape of the
orbit is strongly deformed because the perturbation can
no longer be considered small.

We have also found two narrower stability windows
around the perturbation frequencies f;=2f* and
f2=3f*, even though the first of these frequencies does
not emerge from the broad part of the spectrum. These
windows, where the system is locked over a periodic orbit
with the same frequency of the perturbation, have shapes,
which, like Fig. 5(a), resemble the Arnold tongues in a
quasiperiodic dynamical system [19].

A meaningful comparison between theory and experi-
ment can be performed introducing, instead of the usual
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FIG. 6. Numerical simulations (I vs V) for different values of

the parameter B: (a) B =430 V; (b) B =434 V; (c) B=436V; (d)
B=437V;(e) B=442 V;and (f) B=444 V.
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FIG. 7. Stabilized orbits (I vs V) obtained by numerical
simulations with B =437 V and £€=0.014: (a) perturbation fre-
quency 37.0 kHz and (b) perturbation frequency 39.0 kHz.

rate equations (two-dimensional model), a more detailed
description for the CO, dynamics, the so-called four-level
model [17]. This improved model, accounting for the
coupling between the two laser levels and their rotational
manifolds, has also provided quantitative agreement with
the experimental data in the case of modulated losses
[18]. Choosing a suitable set of model parameters
[15,18], we obtain the Hopf transition and the successive
destabilization of the limit cycle with B and f* values
close to the experiment (Fig. 6). When adding the
sinusoidal perturbation, we obtain € and f ranges close to
the experimental ones, as shown in the examples of Fig.
7. Figure 8, which displays the dependence of A—A_ on
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FIG. 8. Robustness of the model: dependence of A—A, on
the perturbation frequency f, for B =437 V, ¢=0.014. Symbols
denote numerical tests while the solid line represents a cubic fit.

the perturbation frequency (B =437 V, £=0.014),
confirms the validity of the robustness criteria previously
introduced.

To conclude, we have tested an experimental method
for stabilization of the chaotic attractor of a single-mode
CO, laser with feedback. The stabilization is obtained by
means of small parametric modulations having relative
amplitudes of a few percent and frequencies that have ra-
tios of 1:1, 2:3, and 3:2 with respect to the frequency f*
of the leading cycle embedded in the chaotic attractor.
We have also characterized, in proximity of f* (ratio
1:1), the size of the parameter window over which stabili-
zation is achieved. Numerical tests provide a reproduc-
tion of the experimental results.

The authors gratefully acknowledge N. B. Abraham
for helpful discussions. This work was partly supported
by the EC Contract No. SCI*-CT91-0697 (TSTS).

[1]1D. Auerbach, P. Cvitanovic, J. P. Eckmann, G.
Gunaratne, and I. Procaccia, Phys. Rev. Lett. 58, 2387
(1987); C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. A
37, 1711 (1988).

[2] E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64,
1196 (1990); W. L. Ditto, S. N. Rauseo, and M. L. Spano,
ibid. 65, 3211 (1990); U. Dressler and G. Nitsche, ibid. 68,
1(1992).

[3] B. Peng, V. Petrov, and K. Showalter, J. Phys. Chem. 95,
4957 (1991).

[4] E. R. Hunt, Phys. Rev. Lett. 67, 1953 (1991); R. Roy, T.
W. Murphy. T. D. Maier, Z. Gills, and E. R. Hunt, ibid.
68, 1259 (1992); T. L. Carroll, I. Triandaf, I. Schwartz,
and L. Pecora, Phys. Rev. A 46, 6189 (1992).

[5] K. Pyragas, Phys. Lett. A 170, 421 (1992); K. Pyragas and
A. TamaSevicius, ibid. 180, 99 (1993); S. Bielawski, D.
Derozier, and P. Glorieux, Phys. Rev. E 49, R971 (1994).

[6] R. Lima and M. Pettini, Phys. Rev. A 41, 726 (1990); L.
Fronzoni, M. Giocondo, and M. Pettini, ibid. 43, 6483
(1991).

[7]1 Y. Braiman and I. Goldhirsch, Phys. Rev. Lett. 66, 2545
(1991); R. Chacén and J. Diaz Berjarano, ibid. 71, 3103
(1993).

[8] Y. Liu and J. R. Rios, Leite, Phys. Lett. A 185, 35 (1994).

[9] A. Azevedo and S. M. Rezende, Phys. Rev. Lett. 66, 1342
(1991).

[10] T. Kapitaniak, L. J. Kocarev, and L. O. Chua, Int. J. Bi-
furc. Chaos 3, 459 (1993).

[11] R. Meucci, W. Gadomski, M. Ciofini, and F. T. Arecchi,
Phys. Rev. E 49, R2528 (1994).

[12] A. Hiubler and E. Liischer, Naturwissenschaften 76, 67
(1989); B. B. Plapp and A. Hiibler, Phys. Rev. Lett. 65,
2302 (1990).

[13] T. Shinbrot, C. Grebogi, E. Ott, and J. A. Yorke, Nature
(London) 363, 411 (1993).

[14] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R.S.
Shaw, Phys. Rev. Lett. 45, 712 (1980).

[15] F. T. Arecchi, W. Gadomski, and R. Meucci, Phys. Rev.
A 34,1617 (1986).

[16] F. T. Arecchi, R. Meucci, and W. Gadomski, Phys. Rev.
Lett. 58,2205 (1987).

[17] R. Meucci, M. Ciofini, and Peng-ye Wang, Opt. Commun.
91, 444 (1992).

[18] M. Ciofini, A. Politi, and R. Meucci, Phys. Rev. A 48, 605
(1993); C. L. Pando L., R. Meucci, M. Ciofini, and F. T.
Arecchi, Chaos 3, 279 (1993).

[19] V. I. Arnold, Trans. Am. Math. Soc. 42, 213 (1965).



